Mathematische Konstante

Eine mathematische Konstante ist eine Zahl, die für Berechnungen eine besondere Bedeutung hat. Zum Beispiel bedeutet die Konstante π (ausgesprochen "Kuchen") das Verhältnis des Umfangs eines Kreises zu seinem Durchmesser. Dieser Wert ist für jeden Kreis immer derselbe. Eine mathematische Konstante ist oft eine reale, nicht ganzzahlige Zahl von Interesse.

Im Gegensatz zu physikalischen Konstanten stammen mathematische Konstanten nicht aus physikalischen Messungen.

Wichtige mathematische Konstanten

Die folgende Tabelle enthält einige wichtige mathematische Konstanten:

Name

Symbol

Wert

Bedeutung

Pi, die Konstante des Archimedes oder die Ludoph-Zahl

π

≈3.141592653589793

Eine transzendente Zahl, die das Verhältnis der Länge des Umfangs eines Kreises zu seinem Durchmesser angibt. Sie ist auch die Fläche des Einheitskreises.

E, die Napier-Konstante

e

≈2.718281828459045

Eine transzendente Zahl, die die Basis der natürlichen Logarithmen ist, manchmal auch als "natürliche Zahl" bezeichnet.

Goldener Schnitt

φ

5 + 1 2 ≈ 1.618 {\displaystyle {\frac {{{\sqrt {5}}+1}{2}}\ca. 1.618} {\displaystyle {\frac {{\sqrt {5}}+1}{2}}\approx 1.618}

Es ist der Wert eines größeren Wertes geteilt durch einen kleineren Wert, wenn dieser gleich dem Wert der Summe der Werte geteilt durch den größeren Wert ist.

Quadratwurzel aus 2, Pythagoras-Konstante

2 {\displaystyle {\sqrt {2}}} {\displaystyle {\sqrt {2}}}

≈ 1.414 {\Anzeigestil \ca. 1.414} {\displaystyle \approx 1.414}

Eine irrationale Zahl, die die Länge der Diagonale eines Quadrats mit Seiten der Länge 1 ist. Diese Zahl kann nicht als Bruch geschrieben werden.

Konstanten und Reihen

Die folgende Tabelle enthält eine Liste von Konstanten und Reihen in der Mathematik mit den folgenden Spalten:

  • Wert: Numerischer Wert der Konstante.
  • LaTeX: Formel oder Serie im TeX-Format.
  • Formel: Zur Verwendung in Programmen wie Mathematica oder Wolfram Alpha.
  • OEIS: Link zur On-Line Encyclopedia of Integer Sequences (OEIS), wo die Konstanten mit weiteren Details verfügbar sind.
  • Fortsetzung der Fraktion: In der einfachen Form [zur Ganzzahl; frac1, frac2, frac3, ...] (in Klammern, falls periodisch)
  • Art:

Beachten Sie, dass die Liste entsprechend geordnet werden kann, indem Sie auf den Titel der Kopfzeile oben in der Tabelle klicken.

Wert

Name

Symbol

LaTeX

Formel

Geben Sie  ein.

OEIS

Fortsetzung der Fraktion

3.24697960371746706105000976800847962

Silber, Tutte-Beraha-Konstante

ς {\displaystyle \varsigma } {\displaystyle \varsigma }

2 + 2 cos ( 2 π / 7 ) = 2 + 2 + 2 + 7 + 7 7 + 7 7 + 7 7 + 3 3 3 3 1 + 7 + 7 7 + 7 7 + 7 7 + 3 3 3 {\darstellungsstil 2+2\cos(2\pi /7)=\textstil 2+{\frac {2+{\sqrt[{3}]{7+7{\sqrt[{3}]{7+7{\sqrt[{3}]{\,7+\cdots }}}}}}}{1+{\sqrt[{3}]{7+7{\sqrt[{3}]{7+7{\sqrt[{3}]{\,7+\cdots }}}}}}}}} {\displaystyle 2+2\cos(2\pi /7)=\textstyle 2+{\frac {2+{\sqrt[{3}]{7+7{\sqrt[{3}]{7+7{\sqrt[{3}]{\,7+\cdots }}}}}}}{1+{\sqrt[{3}]{7+7{\sqrt[{3}]{7+7{\sqrt[{3}]{\,7+\cdots }}}}}}}}}

2+2 cos(2Pi/7)

T

A116425

[3;4,20,2,3,1,6,10,5,2,2,1,2,2,1,18,1,1,3,2,...]

1.09864196439415648573466891734359621

Pariser Konstante

C P a {\Anzeigestil C_{Pa}} {\displaystyle C_{Pa}}

∏ n = 2 ∞ 2 ∞ 2 φ φ + φ n , φ = F i {\displaystyle \prod _{n=2}^{\infty }{\frac {2\varphi }{\varphi +\varphi _{n}}}}\;,\varphi ={Fi}} {\displaystyle \prod _{n=2}^{\infty }{\frac {2\varphi }{\varphi +\varphi _{n}}}\;,\varphi ={Fi}}

I

A105415

[1;10,7,3,1,3,1,5,1,4,2,7,1,2,3,22,1,2,5,2,1,...]

2.74723827493230433305746518613420282

Ramanujan verschachtelter Radikaler R5

R 5 {\Anzeigestil R_{5}} {\displaystyle R_{5}}

5 + 5 + 5 - 5 + 5 + 5 + 5 + 5 + 5 - = 2 + 5 + 15 - 6 5 2 {\displaystyle \scriptstyle {\sqrt {5+{\sqrt {5+{\sqrt {5-{\sqrt {5+{\sqrt {5+{\sqrt {5+{\sqrt {5+{\sqrt {5-\cdots }}}}}}}}}}}}}}\;=\Text-Stil {\frac {2+{\sqrt {5}}+{\sqrt {15-6{\sqrt {5}}}}}{2}}} {\displaystyle \scriptstyle {\sqrt {5+{\sqrt {5+{\sqrt {5-{\sqrt {5+{\sqrt {5+{\sqrt {5+{\sqrt {5-\cdots }}}}}}}}}}}}}}\;=\textstyle {\frac {2+{\sqrt {5}}+{\sqrt {15-6{\sqrt {5}}}}}{2}}}

(2+sqrt(5)+sqrt(15-6 sqrt(5)))/2

I

[2;1,2,1,21,1,7,2,1,1,2,1,2,1,17,4,4,1,1,4,2,...]

2.23606797749978969640917366873127624

Quadratwurzel aus 5, Gauß-Summe

5 {\ansichtsstil {\sqrt {5}}} {\displaystyle {\sqrt {5}}}

n = 5 , ∑ k = 0 n - 1 und 2 k 2 π i n = 1 + und 2 π i 5 + und 8 π i 5 + und 18 π i 5 + und 32 π i 5 {\displaystyle \scriptstyle \forall \,n=5,\darstellungsstil \sum _{k=0} {\n-1}e{\frac {\2k}{2}{1+e{\frac {\2k}{5}+e{8}{5}+e{\frac {\i1}{1+e}. {\displaystyle \scriptstyle \forall \,n=5,\displaystyle \sum _{k=0}^{n-1}e^{\frac {2k^{2}\pi i}{n}}=1+e^{\frac {2\pi i}{5}}+e^{\frac {8\pi i}{5}}+e^{\frac {18\pi i}{5}}+e^{\frac {32\pi i}{5}}}

Summe[k=0 bis 4]{e^(2k^2 pi i/5)}

I

A002163

[2;4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,...]
= [2;(4),...]

3.62560990822190831193068515586767200

Gamma(1/4)

Γ ( 1 4 ) {\displaystyle \Gamma ({\tfrac {1}{4}}})} {\displaystyle \Gamma ({\tfrac {1}{4}})}

4 ( 1 4 ) ! = ( − 3 4 ) ! {\Anzeigestil 4\links({\frac {1}{4}}\rechts)!=\links(-{\frac {3}{4}}\rechts)! } {\displaystyle 4\left({\frac {1}{4}}\right)!=\left(-{\frac {3}{4}}\right)!}

4(1/4)!

T

A068466

[3;1,1,1,2,25,4,9,1,1,8,4,1,6,1,1,19,1,1,4,1,...]

0.18785964246206712024851793405427323

MRB konstant, Marvin Ray Burns

C M R B {\Anzeigestil C_{_{_{MRB}}} {\displaystyle C_{_{MRB}}}

∑ n = 1 ∞ ( - 1 ) n ( n 1 / n - 1 ) = - 1 1 1 + 2 2 - 3 3 + 4 4 ... {\darstellungsstil \sum _{n=1}^{\infty }({-}1)^{n}(n^{1/n}{-}1)=-{\sqrt[{1}]{1}}}+{\sqrt[{2}]{2}}-{\sqrt[{3}]{3}}+{\sqrt[{4}]{4}}\,\Punkte } {\displaystyle \sum _{n=1}^{\infty }({-}1)^{n}(n^{1/n}{-}1)=-{\sqrt[{1}]{1}}+{\sqrt[{2}]{2}}-{\sqrt[{3}]{3}}+{\sqrt[{4}]{4}}\,\dots }

Summe[n=1 bis ∞]{(-1)^n (n^(1/n)-1)}

T

A037077

[0;5,3,10,1,1,4,1,1,1,1,9,1,1,12,2,17,2,2,1,...]

0.11494204485329620070104015746959874

Kepler-Bouwkamp-Konstante

ρ {\rho {\rho}} {\displaystyle {\rho }}

∏ n = 3 ∞ cos ( π n ) = cos ( π 3 ) cos ( π 4 ) cos ( π 5 ) ... {\Anzeigestil \prod _{n=3}^{\infty }\cos \left({\frac {\pi {n}}\right)=\cos {\frac {\pi }3}\right)\cos \left({\frac {\pi }{4}\right)\cos \left({\frac {\pi }{5}\right)\dots } {\displaystyle \prod _{n=3}^{\infty }\cos \left({\frac {\pi }{n}}\right)=\cos \left({\frac {\pi }{3}}\right)\cos \left({\frac {\pi }{4}}\right)\cos \left({\frac {\pi }{5}}\right)\dots }

prod[n=3 bis ∞]{cos(pi/n)}

T

A085365

[0;8,1,2,2,1,272,2,1,41,6,1,3,1,1,26,4,1,1,...]

1.78107241799019798523650410310717954

Exp(gamma)
G-Barnes-Funktion

e γ {\displaystyle e^{\gamma }} {\displaystyle e^{\gamma }}

∏ n = 1 ∞ e 1 n 1 + 1 n = ∏ n = 0 ∞ ( ∏ k = 0 n ( k + 1 ) ( - 1 ) k + 1 ( n k ) ) 1 n + 1 = {\Anzeigestil \stachel _{n=1}^{\einzigartig }{\frac {e^{\frac {1}{n}}}{1+{\frac {1}{n}}}}=\stachel _{n=0}^{\einzigartig }\links(\stachel _{k=0}^{{n}(k+1)^{(-1)^{{k+1}{n \wähle k}}\rechts)^{{\frac {1}{n+1}}=} {\displaystyle \prod _{n=1}^{\infty }{\frac {e^{\frac {1}{n}}}{1+{\tfrac {1}{n}}}}=\prod _{n=0}^{\infty }\left(\prod _{k=0}^{n}(k+1)^{(-1)^{k+1}{n \choose k}}\right)^{\frac {1}{n+1}}=}

( 2 1 ) 1 / 2 ( 2 2 1 3 ) 1 / 3 ( 2 3 4 1 3 3 ) 1 / 4 ( 2 4 4 4 1 3 6 5 ) 1 / 5 ... {\Anzeige-Stil \Text-Stil \links({\frac {2}{1}}}\rechts)^{1/2}\links({\frac {2^{{2}}{1\cPunkt 3}}}\rechts)^{1/3}\links({\frac {2^{3}\cPunkt 4}{1\cPunkt 3^{3}}}}}}}rechts)^{1/4}\links({\frac {2^{{4}\cPunkt 4^{{4}}}{1\cPunkt 3^{6}\cPunkt 5}}}}}rechts)^{{1/5}\Punkte } {\displaystyle \textstyle \left({\frac {2}{1}}\right)^{1/2}\left({\frac {2^{2}}{1\cdot 3}}\right)^{1/3}\left({\frac {2^{3}\cdot 4}{1\cdot 3^{3}}}\right)^{1/4}\left({\frac {2^{4}\cdot 4^{4}}{1\cdot 3^{6}\cdot 5}}\right)^{1/5}\dots }

Prod[n=1 bis ∞]{e^(1/n)}/{1 + 1/n}

T

A073004

[1;1,3,1,1,3,5,4,1,1,2,2,1,7,9,1,16,1,1,1,2,...]

1.28242712910062263687534256886979172

Glaisher-Kinkelin-Konstante

Eine {\a}Anzeigeart {A}} {\displaystyle {A}}

e 1 12 - ζ ′ ( - 1 ) = e 1 8 - 1 2 ∑ n = 0 ∞ 1 n + 1 ∑ k = 0 n ( - 1 ) k ( n k ) ( k + 1 ) 2 ln ( k + 1 ) {\displaystyle e^{{\frac {1}{12}}-\zeta ^{\prime }(-1)}=e^{{\frac {1}{8}}-{\frac {1}{2}}\sum \grenzwerte _{n=0}^{\infty }{\frac {1}{n+1}}\sum \grenzwerte _{k=0}^{{n}\links(-1\rechts)^{k}{\binom {n}{k}}\links(k+1\rechts)^{2}\ln(k+1)}}} {\displaystyle e^{{\frac {1}{12}}-\zeta ^{\prime }(-1)}=e^{{\frac {1}{8}}-{\frac {1}{2}}\sum \limits _{n=0}^{\infty }{\frac {1}{n+1}}\sum \limits _{k=0}^{n}\left(-1\right)^{k}{\binom {n}{k}}\left(k+1\right)^{2}\ln(k+1)}}

e^(1/2-zeta'{-1})

T

A074962

[1;3,1,1,5,1,1,1,3,12,4,1,271,1,1,2,7,1,35,...]

7.38905609893065022723042746057500781

Schwarzschild Konische Konstante

e 2 {\Anzeigestil e^{2}}} {\displaystyle e^{2}}

∑ n = 0 ∞ 2 n n ! = 1 + 2 + 2 2 2 ! + 2 3 3 ! + 2 4 4 ! + 2 5 5 ! + ... {\darstellungsstil \sum _{n=0}^{\infty }{\frac {2^{n}}{n!}}=1+2+{\frac {2^{2}}{2!}}}+{\frac {2^{3}}}{3!}}+{\frac {2^{4}}{4!}}+{\frac {2^{5}}{5!}}+\punkte } {\displaystyle \sum _{n=0}^{\infty }{\frac {2^{n}}{n!}}=1+2+{\frac {2^{2}}{2!}}+{\frac {2^{3}}{3!}}+{\frac {2^{4}}{4!}}+{\frac {2^{5}}{5!}}+\dots }

Summe[n=0 bis ∞]{2^n/n!}

T

A072334

7;2,1,1,3,18,5,1,1,1,6,30,8,1,1,9,42,11,1,...]
= [7,2,(1,1,n,4*n+6,n+2)], n = 3, 6, 9, usw.

1.01494160640965362502120255427452028

Gieseking-Konstante

G G i {\Anzeigestil {G_{Gi}}} {\displaystyle {G_{Gi}}}

3 3 4 ( 1 - ∑ n = 0 ∞ 1 ( 3 n + 2 ) 2 + ∑ n = 1 ∞ 1 ( 3 n + 1 ) 2 ) = {\displaystyle {\frac {{\sqrt {3}}}{4}}}\links(1-\sum _{n=0}^{\infty }{\frac {1}{(3n+2)^{2}}}}+\sum _{n=1}^{\infty }{\frac {1}{(3n+1)^{2}}}}\right)=} {\displaystyle {\frac {3{\sqrt {3}}}{4}}\left(1-\sum _{n=0}^{\infty }{\frac {1}{(3n+2)^{2}}}+\sum _{n=1}^{\infty }{\frac {1}{(3n+1)^{2}}}\right)=}

3 3 4 ( 1 - 1 2 2 2 + 1 4 2 - 1 5 2 + 1 7 2 - 1 8 2 + 1 10 2 ± ... ) {\displaystyle \textstyle {\frac {\sqrt {3}}}{4}}}\links(1-{\frac {1}{2^{2}}}+{\frac {1}{4^{2}}}-{\frac {1}{5^{2}}}+{\frac {1}{7^{2}}}-{\frac {1}{8^{2}}}}+{\frac {1}{10^{2}}}}\pm \punkte \rechts)} {\displaystyle \textstyle {\frac {3{\sqrt {3}}}{4}}\left(1-{\frac {1}{2^{2}}}+{\frac {1}{4^{2}}}-{\frac {1}{5^{2}}}+{\frac {1}{7^{2}}}-{\frac {1}{8^{2}}}+{\frac {1}{10^{2}}}\pm \dots \right)}.

T

A143298

[1;66,1,12,1,2,1,4,2,1,3,3,1,4,1,56,2,2,11,...]

2.62205755429211981046483958989111941

Lemniscata-Konstante

ϖ {\displaystyle {\varpi }} {\displaystyle {\varpi }}

π G = 4 2 π ( 1 4 ! ) 2 {\displaystyle \pi \,{{G}=4{\sqrt {\tfrac {2}{\pi }}}\,({\tfrac {1}{4}}}!)^{2}}} {\displaystyle \pi \,{G}=4{\sqrt {\tfrac {2}{\pi }}}\,({\tfrac {1}{4}}!)^{2}}

4 sqrt(2/pi) (1/4!)^2

T

A062539

[2;1,1,1,1,1,4,1,2,5,1,1,1,14,9,2,6,2,9,4,1,...]

0.83462684167407318628142973279904680

Gauß-Konstante

G {\Anzeigestil {G}} {\displaystyle {G}}

1 a g m ( 1 , 2 ) = 4 2 ( 1 4 ! ) 2 π 3 / 2 A g m : A r i t d e r M e t t i k - g e o m e t r i k m e a n {\darstellungsstil {\Untermenge {\Agm:}Arithmetisch-geometrischer {\aagm}. (1,{\sqrt {2})}}{\frac {4\sqrt {2}!)}{3/2}}}}}} {\displaystyle {\underset {Agm:\;Arithmetic-geometric\;mean}{{\frac {1}{\mathrm {agm} (1,{\sqrt {2}})}}={\frac {4{\sqrt {2}}\,({\tfrac {1}{4}}!)^{2}}{\pi ^{3/2}}}}}}

(4 sqrt(2)(1/4!)^2)/pi^(3/2)

T

A014549

[0;1,5,21,3,4,14,1,1,1,1,1,3,1,15,1,3,7,1,...]

1.01734306198444913971451792979092052

Zeta(6)

ζ ( 6 ) {\displaystyle \zeta (6)} {\displaystyle \zeta (6)}

π 6 945 = ∏ n = 1 ∞ 1 1 - p n - 6 p n : p r i m o = 1 1 - 2 - 6 1 1 - 3 - 6 1 1 - 5 - 6 . . . {\displaystyle {\frac {\pi ^{6}}}{945}}}=\prod _{n=1}^{\infty }{\underset {p_{n}:\,{primo}}{\frac {1}{{{1-p_{n}}^{-6}}}}={\frac {1}{1}{-}2^{-6}}}{\cdot }{\frac {1}{1{-}3^{-6}}}{\cdot }{\frac {1}{1{-}5^{-6}}}}... } {\displaystyle {\frac {\pi ^{6}}{945}}=\prod _{n=1}^{\infty }{\underset {p_{n}:\,{primo}}{\frac {1}{{1-p_{n}}^{-6}}}}={\frac {1}{1{-}2^{-6}}}{\cdot }{\frac {1}{1{-}3^{-6}}}{\cdot }{\frac {1}{1{-}5^{-6}}}...}

Prod[n=1 bis ∞] {1/(1-ithprime(n)^-6)}

T

A013664

[1;57,1,1,1,15,1,6,3,61,1,5,3,1,6,1,3,3,6,1,...]

0,60792710185402662866327677925836583

Constante de Hafner-Sarnak-McCurley

1 ζ ( 2 ) {\displaystyle {\frac {\zeta {1}{\zeta (2)}}} {\displaystyle {\frac {1}{\zeta (2)}}}

6 π 2 = ∏ n = 0 ∞ ( 1 - 1 p n 2 ) p n : p r i m o = ( 1 - 1 2 2 ) ( 1 - 1 3 2 ) ( 1 - 1 5 2 ) ... {\darstellungsstil {\frac {6}{\pi ^{2}}}{=}\prod _{n=0}^{\infty }{\underset {p_{n}:\,{primo}}{\links(1-{\frac {1}{{p_{n}}^{2}}}}}}}}}{=}\Textart \links(1{-}{\frac {1}{2^{2}}}}}}rechts)\links(1{-}{\frac {1}{3^{2}}}}}}rechts)\links(1{-}{\frac {1}{5^{2}}}}}rechts)\Punkte } {\displaystyle {\frac {6}{\pi ^{2}}}{=}\prod _{n=0}^{\infty }{\underset {p_{n}:\,{primo}}{\left(1-{\frac {1}{{p_{n}}^{2}}}\right)}}{=}\textstyle \left(1{-}{\frac {1}{2^{2}}}\right)\left(1{-}{\frac {1}{3^{2}}}\right)\left(1{-}{\frac {1}{5^{2}}}\right)\dots }

Prod{n=1 bis ∞} (1-1/ithprime(n)^2)

T

A059956

[0;1,1,1,1,4,2,4,7,1,4,2,3,4,10,1,2,1,1,1,...]

1.11072073453959156175397024751517342

Das Verhältnis von Quadrat und umschriebenen oder eingeschriebenen Kreisen

π 2 2 {\displaystyle {\frac {\pi }{2{\sqrt {2}}}}} {\displaystyle {\frac {\pi }{2{\sqrt {2}}}}}

∑ n = 1 ∞ ( - 1 ) n - 1 2 2 n + 1 = 1 1 1 + 1 3 - 1 5 - 1 7 + 1 9 + 1 11 - ... {\darstellungsstil \sum _{n=1}^{\infty }{\frac {(-1)^{\lfloor {\frac {n-1}{2}}\rfloor }}{2n+1}}}={\frac {1}{1}}+{\frac {1}{3}}-{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}}+{\frac {1}{11}}-\Punkte } {\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{\lfloor {\frac {n-1}{2}}\rfloor }}{2n+1}}={\frac {1}{1}}+{\frac {1}{3}}-{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}+{\frac {1}{11}}-\dots }

Summe[n=1 bis ∞]{(-1)^(Etage((n-1)/2))/(2n-1)}

T

A093954

[1;9,31,1,1,17,2,3,3,2,3,1,1,2,2,1,4,9,1,3,...]

2.80777024202851936522150118655777293

Fransén-Robinson-Konstante

F {\Anzeigestil {F}} {\displaystyle {F}}

∫ 0 ∞ 1 Γ ( x ) d x . = e + ∫ 0 ∞ e - x π 2 + ln 2 x d x {\d x {\displaystyle \int _{0}^{\infty }{\frac {1}{\Gamma (x)}}}\,dx.=e+\int _{0}^{\infty }{\frac {e^{-x}}{\pi ^{2}+\ln ^{{{2}x}}\,dx} {\displaystyle \int _{0}^{\infty }{\frac {1}{\Gamma (x)}}\,dx.=e+\int _{0}^{\infty }{\frac {e^{-x}}{\pi ^{2}+\ln ^{2}x}}\,dx}

N[int[0 bis ∞] {1/Gamma(x)}]

T

A058655

[2;1,4,4,1,18,5,1,3,4,1,5,3,6,1,1,1,5,1,1,1...]

1.64872127070012814684865078781416357

Quadratwurzel der Zahl e

e {\sqrt {\sqrt {e}} {\displaystyle {\sqrt {e}}}

∑ n = 0 ∞ 1 2 n n n ! = ∑ n = 0 ∞ 1 ( 2 n ) ! ! = 1 1 1 + 1 2 + 1 8 + 1 48 + {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{2^{{n}n!}}}=\sum _{n=0}^{\infty }{\frac {1}{(2n)!!}}}={\frac {1}{1}}}+{\frac {1}{2}}}+{\frac {1}{8}}+{\frac {1}{48}}+\cdots } {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{2^{n}n!}}=\sum _{n=0}^{\infty }{\frac {1}{(2n)!!}}={\frac {1}{1}}+{\frac {1}{2}}+{\frac {1}{8}}+{\frac {1}{48}}+\cdots }

Summe[n=0 bis ∞]{1/(2^n n!)}

T

A019774

[1;1,1,1,1,5,1,1,1,9,1,1,1,13,1,1,17,1,1,1,21,1,1,1,...]
= [1;1,(1,1,4p+1)], p∈ℕ

i

Imaginäre Zahl

i {\a}Anzeige-Stil {i} {\displaystyle {i}}

- 1 = ln ( - 1 ) π e i π = - 1 {\displaystyle {\sqrt {-1}}={\frac {\ln(-1)}{\pi }\qquad \qquad \mathrm {e} ^i\,\pi {\pi}=-1} {\displaystyle {\sqrt {-1}}={\frac {\ln(-1)}{\pi }}\qquad \qquad \mathrm {e} ^{i\,\pi }=-1}

sqrt(-1)

C

262537412640768743.999999999999250073

Hermite-Ramanujanische Konstante

R {\Anzeigestil {R}} {\displaystyle {R}}

e π 163 {\displaystyle e^{\pi {\sqrt {163}}}} {\displaystyle e^{\pi {\sqrt {163}}}}

e^(π sqrt(163))

T

A060295

[262537412640768743;1,1333462407511,1,8,1,1,5,...]

4.81047738096535165547303566670383313

John-Konstante

γ {\displaystyle \gamma } {\displaystyle \gamma }

i i = i - i = i 1 i = ( i i i ) - 1 = e π 2 {\displaystyle {\sqrt[{i}]{i}}}=i^{-i}=i^{\frac {1}{i}}=(i^{i})^{{-1}=e^{\frac {\pi }{2}}} {\displaystyle {\sqrt[{i}]{i}}=i^{-i}=i^{\frac {1}{i}}=(i^{i})^{-1}=e^{\frac {\pi }{2}}}

e^(π/2)

T

A042972

[4;1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,3,...]

4.53236014182719380962768294571666681

Constante de Van der Pauw

α {\darstellungsstil \alpha } {\displaystyle \alpha }

π l n ( 2 ) = ∑ n = 0 ∞ 4 ( - 1 ) n 2 n + 1 ∑ n = 1 ∞ ( - 1 ) n + 1 n = 4 1 - 4 3 + 4 5 - 4 7 + 4 9 - ... 1 1 - 1 2 + 1 3 - 1 4 + 1 5 - ... {\displaystyle {\frac {\pi }{ln(2)}}={\frac {\sum _{n=0}^{\infty }{\frac {\4(-1)^{{n}}{2n+1}}}}{\sum _{n=1}^{\infty }{\frac {(-1)^{{n+1}}{n}}}}={\frac {{\frac {4}{1}}}{-}{\frac {4}{3}}{+}{\frac {4}{5}}{-{\frac {4}{7}}{+}{\frac {4}{9}}-\dots }{\frac {1}{1}{1}}{-}{\frac {1}{2}}{+}{\frac {1}{3}}{-}{\frac {1}{4}}{+}{\frac {1}{5}}-\dots }} {\displaystyle {\frac {\pi }{ln(2)}}={\frac {\sum _{n=0}^{\infty }{\frac {4(-1)^{n}}{2n+1}}}{\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}}}={\frac {{\frac {4}{1}}{-}{\frac {4}{3}}{+}{\frac {4}{5}}{-}{\frac {4}{7}}{+}{\frac {4}{9}}-\dots }{{\frac {1}{1}}{-}{\frac {1}{2}}{+}{\frac {1}{3}}{-}{\frac {1}{4}}{+}{\frac {1}{5}}-\dots }}}

π/ln(2)

T

A163973

[4;1,1,7,4,2,3,3,1,4,1,1,4,7,2,3,3,12,2,1,...]

0.76159415595576488811945828260479359

Hyperbolische Tangente (1)

t h 1 {\darstellungsstil th\,1} {\displaystyle th\,1}

e - 1 e e + 1 e = e 2 - 1 e 2 + 1 {\displaystyle {\frac {e-{\frac {1}{e}}}}{e+{\frac {1}{e}}}}={\frac {e^{2}-1}{e^{2}+1}}}} {\displaystyle {\frac {e-{\frac {1}{e}}}{e+{\frac {1}{e}}}}={\frac {e^{2}-1}{e^{2}+1}}}

(e-1/e)/(e+1/e)

T

A073744

[0;1,3,5,7,9,11,13,15,17,19,21,23,25,27,...]
= [0;(2p+1)], p∈ℕ

0.69777465796400798200679059255175260

Fortgesetzte Fraktion konstant

C C F {\Anzeigestil {C}_{CF}} {\displaystyle {C}_{CF}}

J 1 ( 2 ) J 0 ( 2 ) F u n k t i o n J k ( ) B e s s e l = ∑ n = 0 ∞ n n ! n ! ∑ n = 0 ∞ 1 n ! n ! n ! = 0 1 1 + 1 1 1 + 2 4 + 3 36 + 4 576 + ... 1 1 1 + 1 1 1 + 1 4 + 1 36 + 1 576 + ... {\Darstellungsstil {\Untermenge {J_{k}(){Bessel}}{\underset {Funktion}{\frac {J_{1}(2)}{J_{0}(2)}}}}={\frac {\sum \limits _{n=0}^{\infty }{\frac {n}{n}{n!n!Obergrenzen _{n=0}^{\infty }{\frac {\an8}{\an8}}1{n!n!}}}}={\frac {\frac {0}{1}}}+{\frac {1}{1}}}+{\frac {2}{4}}}+{\frac {3}{36}}}+{\frac {4}{576}}+\punkte }{\frac {1}{1}{1}}}+{\frac {1}{1}{1}{1}{1}{1}{1}}}+{\frac {1}{4}}}+{\frac {1}{576}}+\punkte }} {\displaystyle {\underset {J_{k}(){Bessel}}{\underset {Function}{\frac {J_{1}(2)}{J_{0}(2)}}}}={\frac {\sum \limits _{n=0}^{\infty }{\frac {n}{n!n!}}}{\sum \limits _{n=0}^{\infty }{\frac {1}{n!n!}}}}={\frac {{\frac {0}{1}}+{\frac {1}{1}}+{\frac {2}{4}}+{\frac {3}{36}}+{\frac {4}{576}}+\dots }{{\frac {1}{1}}+{\frac {1}{1}}+{\frac {1}{4}}+{\frac {1}{36}}+{\frac {1}{576}}+\dots }}}

(Summe {n=0 bis inf} n/(n!n!)) /(Summe {n=0 bis inf} 1/(n!n!))

A052119

[0;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,...]
= [0;(p+1)], p∈ℕ

0.36787944117144232159552377016146086

Inverse Napier-Konstante

1 e {\displaystyle {\frac {1}{e}}} {\displaystyle {\frac {1}{e}}}

∑ n = 0 ∞ ( - 1 ) n n n ! = 1 0 ! - − 1 1 ! + 1 2 ! - − 1 3 ! + 1 4 ! - − 1 5 ! + ... {\darstellungsstil \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{n!}}={\frac {1}{0!}}-{\frac {1}{1!}}+{\frac {1}{2!}}-{\frac {1}{3!}}}+{\frac {1}{4!}}-{\frac {1}{5!}}}+\punkte } {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{n!}}={\frac {1}{0!}}-{\frac {1}{1!}}+{\frac {1}{2!}}-{\frac {1}{3!}}+{\frac {1}{4!}}-{\frac {1}{5!}}+\dots }

Summe[n=2 bis ∞]{(-1)^n/n!}

T

A068985

[0;2,1,1,1,2,1,1,1,4,1,1,1,6,1,1,8,1,1,1,10,1,1,1,12,...]
= [0;2,1,(1,2p,1)], p∈ℕ

2.71828182845904523536028747135266250

Napier-Konstante

e {\Anzeigestil e} {\displaystyle e}

∑ n = 0 ∞ 1 n ! = 1 0 ! + 1 1 + 1 2 ! + 1 3 ! + 1 4 ! + 1 5 ! + {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{n!}}={\frac {1}{0!}}+{\frac {1}{1}{1}}}+{\frac {1}{2!}}}+{\frac {1}{3!}}+{\frac {1}{4!}}+{\frac {1}{5!}}+\cdots } {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{n!}}={\frac {1}{0!}}+{\frac {1}{1}}+{\frac {1}{2!}}+{\frac {1}{3!}}+{\frac {1}{4!}}+{\frac {1}{5!}}+\cdots }

Summe[n=0 bis ∞]{1/n!}

T

A001113

[2;1,2,1,1,1,4,1,1,1,6,1,1,1,8,1,1,1,10,1,1,1,12,1,...]
= [2;(1,2p,1)], p∈ℕ

0.49801566811835604271369111746219809
- 0.15494982830181068512495513048388 i

Faktorielles von i

i ! ...im Display-Stil. } {\displaystyle i\,!}

Γ ( 1 + i ) = i Γ ( i ) {\Anzeigestil \Gamma (1+i)=i\,\Gamma (i)} {\displaystyle \Gamma (1+i)=i\,\Gamma (i)}

Gamma(1+i)

C

A212877
A212878

[0;6,2,4,1,8,1,46,2,2,3,5,1,10,7,5,1,7,2,...]
- [0;2,125,2,18,1,2,1,1,19,1,1,1,2,3,34,...] i

0.43828293672703211162697516355126482
+ 0.36059247187138548595294052690600 i

Unendlich
Durchdringung von i

∞ i {\ansichtsstil {}^{\infty }i} {\displaystyle {}^{\infty }i}

lim n → ∞ n i = lim n → ∞ i i i ⋅ ⋅ i n {\Anzeigestil \lim _{n\bis \infty }{}^{n}i=\lim _{n\bis \infty }\unterbinde {i^{i^{\cdot ^{\cdot ^{i}}}}} _{n}} {\displaystyle \lim _{n\to \infty }{}^{n}i=\lim _{n\to \infty }\underbrace {i^{i^{\cdot ^{\cdot ^{i}}}}} _{n}}

i^i^i^i^...

C

A077589
A077590

[0;2,3,1,1,4,2,2,1,10,2,1,3,1,8,2,1,2,1, ...]
+ [0;2,1,3,2,2,3,1,5,5,1,2,1,10,10,6,1,1...] i

0.56755516330695782538461314419245334

Modul des
Unendlichen
Durchdringung von i

∞ i | | | | | | | | | | | | ∞ i | | | | | | | | | | | | | {\displaystyle |{}^{\infty }i|}

lim n → ∞ | n i | = | lim n → ∞ i i i ⋅ ⋅ i n | | {\darstellungsstil \lim _{n\to \infty }\left|{}^{n}i\right|=\left|\lim _{n\to \infty }\underbrace {i^{i^{\cdot ^{\cdot ^{i}}}}} {\an8}Richtig.} {\displaystyle \lim _{n\to \infty }\left|{}^{n}i\right|=\left|\lim _{n\to \infty }\underbrace {i^{i^{\cdot ^{\cdot ^{i}}}}} _{n}\right|}

Mod(i^i^i^i^...)

A212479

[0;1,1,3,4,1,58,12,1,51,1,4,12,1,1,2,2,3,...]

0.26149721284764278375542683860869585

Meissel-Mertens-Konstante

M {\ansichtsstil M} {\displaystyle M}

lim n → ∞ ( ∑ p ≤ n 1 p - ln ( ln ( n ) ) ) Anzeigestil \lim _{n\rightarrow \infty \lefty \lefty {\frac {1}{p\leq n}{\frac {1}{p}}-\ln(\ln(n))\right)} p{\displaystyle \lim _{n\rightarrow \infty }\left(\sum _{p\leq n}{\frac {1}{p}}-\ln(\ln(n))\right)}:..... Primzahlen

A077761

[0;3,1,4,1,2,5,2,1,1,1,1,13,4,2,4,2,1,33,...]

1.9287800...

Wright-Konstante

ω {\omega \displaystyle \omega } {\displaystyle \omega }

2 2 2 2 ⋅ ⋅ 2 ω {\displaystyle \links\floor 2^{2^{2^{{\cdot ^{\cdot ^{\cdot ^{2^{\omega }}}}}}\right\rfloor } {\displaystyle \left\lfloor 2^{2^{2^{\cdot ^{\cdot ^{2^{\omega }}}}}}\right\rfloor }= primos: {\displaystyle \quad } {\displaystyle \quad } 2 ω {\Anzeigestil \links\Flur 2^{\omega }\rechts\Flur } {\displaystyle \left\lfloor 2^{\omega }\right\rfloor }=3, 2 2 ω {\Anzeigestil \links\Flur 2^{2^{\omega }}\rechts\Flur } {\displaystyle \left\lfloor 2^{2^{\omega }}\right\rfloor }=13, 2 2 2 2 ω {\Anzeigestil \links\floor 2^{2^{2^{{\omega }}}\rechts\floor } {\displaystyle \left\lfloor 2^{2^{2^{\omega }}}\right\rfloor }=16381, ... {\Anzeigestil \dots } {\displaystyle \dots }

A086238

[1; 1, 13, 24, 2, 1, 1, 3, 1, 1, 3]

0.37395581361920228805472805434641641

Artin-Konstante

C A r t i n {\Anzeigestil C_{Artin}} {\displaystyle C_{Artin}}

∏ n = 1 ∞ ( 1 - 1 p n ( p n - 1 ) ) {\Anzeigestil \prod _{n=1}^{\infty }\links(1-{\frac {1}{p_{n}(p_{n}-1)}}}}rechts)} ......pn{\displaystyle \prod _{n=1}^{\infty }\left(1-{\frac {1}{p_{n}(p_{n}-1)}}\right)}: prim

T

A005596

[0;2,1,2,14,1,1,2,3,5,1,3,1,5,1,1,2,3,5,46,...]

4.66920160910299067185320382046620161

Feigenbaum-Konstante δ

δ {\a6}Anzeige-Stil {\delta } {\displaystyle {\delta }}

lim n → ∞ x n + 1 - x n x n x n + 2 - x n + 1 x ( 3 , 8284 ; 3 , 8495 ) {\displaystyle \lim _{n\to \infty }{\frac {x_{n+1}-x_{n}}}{x_{n+2}-x_{n+1}}}\qquad \scriptstyle x\in (3,8284;\,3,8495)} {\displaystyle \lim _{n\to \infty }{\frac {x_{n+1}-x_{n}}{x_{n+2}-x_{n+1}}}\qquad \scriptstyle x\in (3,8284;\,3,8495)}

x n + 1 = a x n ( 1 - x n ) o x n + 1 = a sin ( x n ) {\displaystyle \scriptstyle x_{n+1}=\,ax_{n}(1-x_{n})\quad {o}\quad x_{n+1}=\,a\sin(x_{n})} {\displaystyle \scriptstyle x_{n+1}=\,ax_{n}(1-x_{n})\quad {o}\quad x_{n+1}=\,a\sin(x_{n})}

T

A006890

[4;1,2,43,2,163,2,3,1,1,2,5,1,2,3,80,2,5,...]

2.50290787509589282228390287321821578

Feigenbaum-Konstante α

α {\darstellungsstil \alpha } {\displaystyle \alpha }

lim n → ∞ d n d n + 1 {\darstellungsstil \lim _{n\bis \infty }{\frac {d_{n}}{d_{n+1}}}} {\displaystyle \lim _{n\to \infty }{\frac {d_{n}}{d_{n+1}}}}

T

A006891

[2;1,1,85,2,8,1,10,16,3,8,9,2,1,40,1,2,3,...]

5.97798681217834912266905331933922774

Sechseckige Madelung Konstante 2

H 2 ( 2 ) {\Anzeigestil H_{2}(2)} {\displaystyle H_{2}(2)}

π ln ( 3 ) 3 {\displaystyle \pi \ln(3){\sqrt {3}}} {\displaystyle \pi \ln(3){\sqrt {3}}}

Pi Log[3]Sqrt[3]

T

A086055

[5;1,44,2,2,1,15,1,1,12,1,65,11,1,3,1,1,...]

0.96894614625936938048363484584691860

Beta(3)

β ( 3 ) {\displaystyle \beta (3)} {\displaystyle \beta (3)}

π 3 32 = ∑ n = 1 ∞ - 1 n + 1 ( - 1 + 2 n ) 3 = 1 1 3 - 1 3 3 3 + 1 5 3 - 1 7 3 + ... {\darstellungsstil {\frac {\pi ^{3}}{32}}}=\summe _{{n=1}^{\infty }{\frac {-1^{{n+1}}}{(-1+2n)^{3}}}}}={\frac {1}{1^{3}}}{-}{\frac {1}{3^{3}}}{+}{\frac {1}{5^{3}}}{-}{\frac {1}{7^{3}}}{+}\Punkte } {\displaystyle {\frac {\pi ^{3}}{32}}=\sum _{n=1}^{\infty }{\frac {-1^{n+1}}{(-1+2n)^{3}}}={\frac {1}{1^{3}}}{-}{\frac {1}{3^{3}}}{+}{\frac {1}{5^{3}}}{-}{\frac {1}{7^{3}}}{+}\dots }

Summe[n=1 bis ∞]{(-1)^(n+1)/(-1+2n)^3}

T

A153071

[0;1,31,4,1,18,21,1,1,2,1,2,1,3,6,3,28,1,...]

1.902160583104

Brun-Konstante 2 = Σ Inverse Zwillings-Primzahlen

B 2 {\Anzeigestil B_{\,2}} {\displaystyle B_{\,2}}

∑ ( 1 p + 1 p + 2 ) p , p + 2 : p r i m o s = ( 1 3 + 1 5 ) + ( 1 5 + 1 7 ) + ( 1 11 + 1 13 ) + ... {\darstellungsstil \textstil \sum {\sum {\,\,p+2:\,{primos}}{{{\frac {1}{p}}}+{\frac {1}{p+2}}}}}}}=({\frac {1}{3}}{+}{\frac {1}{5}}})+({\frac {1}{5}}{+}{\frac {1}{7}}})+({\frac {1}{11}}{+}{\frac {1}{13}})+\punkte } {\displaystyle \textstyle \sum {\underset {p,\,p+2:\,{primos}}{({\frac {1}{p}}+{\frac {1}{p+2}})}}=({\frac {1}{3}}{+}{\frac {1}{5}})+({\tfrac {1}{5}}{+}{\tfrac {1}{7}})+({\tfrac {1}{11}}{+}{\tfrac {1}{13}})+\dots }

A065421

[1; 1, 9, 4, 1, 1, 8, 3, 4, 4, 2, 2]

0.870588379975

Brun-Konstante 4 = Σ Inverse der doppelten Primzahl

B 4 {\Anzeigestil B_{\,4}} {\displaystyle B_{\,4}}

( 1 5 + 1 7 + 1 11 + 1 13 ) p , p + 2 , p + 4 , p + 6 : p r i m e s + ( 1 11 + 1 13 + 1 17 + 1 19 ) + ... {\Anzeigestil {\Untermenge {p,\,p+2,\,p+4,\,p+6:{\,{Primes}}{\links({\frac {1}{5}}+{\frac {1}{7}}+{\frac {1}{11}}+{\frac {1}{13}}}\rechts)}}+\links({\frac {1}{11}}+{\frac {1}{13}}}+{\frac {1}{17}}+{\frac {1}{19}}\rechts)+\punkte } {\displaystyle {\underset {p,\,p+2,\,p+4,\,p+6:\,{primes}}{\left({\tfrac {1}{5}}+{\tfrac {1}{7}}+{\tfrac {1}{11}}+{\tfrac {1}{13}}\right)}}+\left({\tfrac {1}{11}}+{\tfrac {1}{13}}+{\tfrac {1}{17}}+{\tfrac {1}{19}}\right)+\dots }

A213007

[0; 1, 6, 1, 2, 1, 2, 956, 3, 1, 1]

22.4591577183610454734271522045437350

Pi^e

π e {\displaystyle \pi ^{e}} {\displaystyle \pi ^{e}}

π e {\displaystyle \pi ^{e}} {\displaystyle \pi ^{e}}

Pi^e

A059850

[22;2,5,1,1,1,1,1,3,2,1,1,3,9,15,25,1,1,5,...]

3.14159265358979323846264338327950288

Pi, Archimedische Konstante

π {\a6}Anzeige-Stil \pi } {\displaystyle \pi }

lim n → ∞ 2 n 2 - 2 + 2 + 2 + 2 n {\darstellungsstil \lim _{n\bis \infty }\,2^{n}\unterbinde {\sqrt {2-{\sqrt {2+{\sqrt {2+\punkte +{\sqrt {2}}}}}}}} _{n}} {\displaystyle \lim _{n\to \infty }\,2^{n}\underbrace {\sqrt {2-{\sqrt {2+{\sqrt {2+\dots +{\sqrt {2}}}}}}}} _{n}}

Summe[n=0 bis ∞]{(-1)^n 4/(2n+1)}

T

A000796

[3;7,15,1,292,1,1,1,2,1,3,1,14,...]

0.06598803584531253707679018759684642

e - e {\Anzeigestil e^{-e}} {\displaystyle e^{-e}}

e - e {\Anzeigestil e^{-e}} {\displaystyle e^{-e}}... Untere Grenze der Durchdringung

T

A073230

[0;15,6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,...]

0.20787957635076190854695561983497877

i^i

i i i {\a}Anzeigeart i^{i}} {\displaystyle i^{i}}

e - π 2 {\displaystyle e^{\frac {-\pi }{2}}} {\displaystyle e^{\frac {-\pi }{2}}}

e^(-pi/2)

T

A049006

[0;4,1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,...]

0.28016949902386913303643649123067200

Bernstein-Konstante

β {\displaystyle \beta } {\displaystyle \beta }

1 2 π {\displaystyle {\frac {1}{2{\sqrt {\pi }}}}} {\displaystyle {\frac {1}{2{\sqrt {\pi }}}}}

T

A073001

[0;3,1,1,3,9,6,3,1,3,13,1,16,3,3,4,…]

0.28878809508660242127889972192923078

Flajolet und Richmond

Q {\Anzeigestil Q} Q

∏ n = 1 ∞ ( 1 - 1 2 n ) = ( 1 - 1 2 1 ) ( 1 - 1 2 2 2 ) ( 1 - 1 2 3 ) ... {\Anzeigestil \prod _{n=1}^{\infty }\links(1-{\frac {1}{2^{n}}}}}right)=\left(1{-}{\frac {1}{2^{1}}}}}right)\left(1{-}{\frac {1}{2^{2}}}}}right)\left(1{-}{\frac {1}{2^{3}}}}}right)\dots } {\displaystyle \prod _{n=1}^{\infty }\left(1-{\frac {1}{2^{n}}}\right)=\left(1{-}{\frac {1}{2^{1}}}\right)\left(1{-}{\frac {1}{2^{2}}}\right)\left(1{-}{\frac {1}{2^{3}}}\right)\dots }

prod[n=1 bis ∞]{1-1/2^n}

A048651

0.31830988618379067153776752674502872

Inverse von Pi, Ramanujan

1 π {\displaystyle {\frac {\pi {1}{\pi }}} {\displaystyle {\frac {1}{\pi }}}

2 2 9801 ∑ n = 0 ∞ ( 4 n ) ! ( 1103 + 26390 n ) ( n ! ) 4 396 4 n {\displaystyle {\frac {2{\sqrt {2}}}{9801}}}\sum _{n=0}^{\infty }{\frac {(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}}} {\displaystyle {\frac {2{\sqrt {2}}}{9801}}\sum _{n=0}^{\infty }{\frac {(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}}}

T

A049541

[0;3,7,15,292,1,1,1,2,1,3,1,14,2,1,1,...]

0.47494937998792065033250463632798297

Weierstraß-Konstante

W W W E {\Anzeigestil W_{_{WE}}} {\displaystyle W_{_{WE}}}

e π 8 π 4 2 3 / 4 ( 1 4 ! ) 2 {\displaystyle {\frac {e^{\frac {\pi }{8}}{\sqrt {\pi }}}{4*2^{3/4}{({\frac {1}{4}}}!)^{2}}}}} {\displaystyle {\frac {e^{\frac {\pi }{8}}{\sqrt {\pi }}}{4*2^{3/4}{({\frac {1}{4}}!)^{2}}}}}

(E^(Pi/8) Sqrt[Pi])/(4 2^(3/4) (1/4)!^2)

T

A094692

[0;2,9,2,11,1,6,1,4,6,3,19,9,217,1,2,...]

0.56714329040978387299996866221035555

Omega-Konstante

Ω {\Anzeigestil \Omega } {\displaystyle \Omega }

W ( 1 ) = ∑ n = 1 ∞ ( - n ) n - 1 n ! = 1 - 1 + 3 2 - 8 3 + 125 24 - ... {\darstellungsstil W(1)=\sum _{n=1}^{\infty }{\frac {(-n)^{n-1}}{n!}}}=1{-}1{+}{\frac {3}{2}}}{-}{\frac {8}{3}}}{+}{\frac {125}{24}}}-\punkte } {\displaystyle W(1)=\sum _{n=1}^{\infty }{\frac {(-n)^{n-1}}{n!}}=1{-}1{+}{\frac {3}{2}}{-}{\frac {8}{3}}{+}{\frac {125}{24}}-\dots }

Summe[n=1 bis ∞]{(-n)^(n-1)/n!}

T

A030178

[0;1,1,3,4,2,10,4,1,1,1,1,2,7,306,1,5,1,...]

0.57721566490153286060651209008240243

Eulersche Zahl

γ {\displaystyle \gamma } {\displaystyle \gamma }

- ψ ( 1 ) = ∑ n = 1 ∞ ∑ ∑ k = 0 ∞ ( - 1 ) k 2 n + k {\darstellungsstil -\psi (1)=\summe _{n=1}^{\infty }\summe _{k=0}^{\infty }{\frac {(-1)^{k}}{2^{{n}+k}}}} {\displaystyle -\psi (1)=\sum _{n=1}^{\infty }\sum _{k=0}^{\infty }{\frac {(-1)^{k}}{2^{n}+k}}}

summe[n=1 bis ∞]|summe[k=0 bis ∞]{((-1)^k)/(2^n+k)}

?

A001620

[0;1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,...]

0.60459978807807261686469275254738524

Dirichlet-Reihe

π 3 3 3 {\displaystyle {\frac {\pi }{3{\sqrt {3}}}}} {\displaystyle {\frac {\pi }{3{\sqrt {3}}}}}

∑ n = 1 ∞ 1 n ( 2 n n ) = 1 - 1 2 + 1 4 - 1 5 + 1 7 - 1 8 + {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n{2n \wähle n}}}}=1-{\frac {1}{2}}+{\frac {1}{4}}-{\frac {1}{5}}}+{\frac {1}{7}}-{\frac {1}{8}}+\cdots } {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n{2n \choose n}}}=1-{\frac {1}{2}}+{\frac {1}{4}}-{\frac {1}{5}}+{\frac {1}{7}}-{\frac {1}{8}}+\cdots }

Summe[1/(n Binomial[2 n, n]), {n, 1, ∞}]]

T

A073010

[0;1,1,1,1,8,10,2,2,3,3,1,9,2,5,4,1,27,27,...]

0.63661977236758134307553505349005745

2/Pi, François Viète

2 π {\displaystyle {\frac {\pi {2}{\pi }}} {\displaystyle {\frac {2}{\pi }}}

2 2 2 + 2 2 2 2 + 2 + 2 + 2 2 2 {\displaystyle {\frac {\sqrt {2}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2}}}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2+{\sqrt {2}}}}}}{2}}\cdots } {\displaystyle {\frac {\sqrt {2}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2}}}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2+{\sqrt {2}}}}}}{2}}\cdots }

T

A060294

[0;1,1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,...]

0.66016181584686957392781211001455577

Doppelte Primzahl-Konstante

C 2 {\Anzeigestil C_{2}} {\displaystyle C_{2}}

∏ p = 3 ∞ p ( p - 2 ) ( p - 1 ) 2 {\Anzeigestil \prod _{p=3}^{\infty }{\frac {p(p-2)}{(p-1)^{2}}}} {\displaystyle \prod _{p=3}^{\infty }{\frac {p(p-2)}{(p-1)^{2}}}}

prod[p=3 bis ∞]{p(p-2)/(p-1)^2

A005597

[0;1,1,1,16,2,2,2,2,1,18,2,2,11,1,1,2,4,1,...]

0.66274341934918158097474209710925290

Laplace-Grenzkonstante

λ {\displaystyle \lambda } {\displaystyle \lambda }

A033259

[0;1,1,1,27,1,1,1,8,2,154,2,4,1,5,...]

0.69314718055994530941723212145817657

Logarithmus de 2

L n ( 2 ) {\Anzeigestil Ln(2)} {\displaystyle Ln(2)}

∑ n = 1 ∞ ( - 1 ) n + 1 n = 1 1 - 1 2 + 1 3 - 1 4 + 1 5 - {\darstellungsstil \sum _{n=1}^{\infty }{\frac {(-1)^{{{n+1}}}{n}}}={\frac {1}{1}{1}}-{\frac {1}{2}}+{\frac {1}{3}}-{\frac {1}{4}}}+{\frac {1}{5}}-\cdots } {\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}={\frac {1}{1}}-{\frac {1}{2}}+{\frac {1}{3}}-{\frac {1}{4}}+{\frac {1}{5}}-\cdots }

Summe[n=1 bis ∞]{(-1)^(n+1)/n}

T

A002162

[0;1,2,3,1,6,3,1,1,2,1,1,1,1,3,10,...]

0.78343051071213440705926438652697546

Traum des Zweitklässlers 1 J.Bernoulli

I 1 {\Anzeigestil I_{1}} {\displaystyle I_{1}}

∑ n = 1 ∞ ( - 1 ) n + 1 n n n = 1 - 1 2 2 + 1 3 3 - 1 4 4 + 1 5 5 + ... {\darstellungsstil \sum _{n=1}^{\infty }{\frac {(-1)^{{n+1}}}{n^{n}}}}=1-{\frac {1}{2^{2}}}}+{\frac {1}{3^{3}}}-{\frac {1}{4^{4}}}+{\frac {1}{5^{5}}}+\punkte } {\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{n}}}=1-{\frac {1}{2^{2}}}+{\frac {1}{3^{3}}}-{\frac {1}{4^{4}}}+{\frac {1}{5^{5}}}+\dots }

Summe[ -(-1)^n /n^n]

T

A083648

[0;1,3,1,1,1,1,1,1,2,4,7,2,1,2,1,1,1,...]

0.78539816339744830961566084581987572

Dirichlet beta(1)

β ( 1 ) {\Anzeigestil \beta (1)} {\displaystyle \beta (1)}

π 4 = ∑ n = 0 ∞ ( - 1 ) n 2 n + 1 = 1 1 - 1 3 + 1 5 - 1 7 + 1 9 - {\displaystyle {\frac {\pi }{4}}=\sum _{n=0}^{\infty }{\frac {(-1)^{{n}}}{2n+1}}}={\frac {1}{1}{1}{3}}}-{\frac {1}{3}}+{\frac {1}{5}}}-{\frac {1}{7}}+{\frac {1}{9}}-\cdots } {\displaystyle {\frac {\pi }{4}}=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{2n+1}}={\frac {1}{1}}-{\frac {1}{3}}+{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}-\cdots }

Summe[n=0 bis ∞]{(-1)^n/(2n+1)}

T

A003881

[0; 1,3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,...]

0.82246703342411321823620758332301259

Handlungsreisender Nielsen-Ramanujan

ζ ( 2 ) 2 {\displaystyle {\frac {\zeta (2)}{2}}}} {\displaystyle {\frac {\zeta (2)}{2}}}

π 2 12 = ∑ n = 1 ∞ ( - 1 ) n + 1 n 2 = 1 1 2 - 1 2 2 + 1 3 2 - 1 4 2 + 1 5 2 - ... {\darstellungsstil {\frac {\pi ^{2}}{12}}}=\summe _{{n=1}^{\infty }{\frac {(-1)^{{n+1}}}{n^{2}}}}={\frac {1}{1^{2}}}{-}{\frac {1}{2^{2}}}{+}{\frac {1}{3^{2}}}{-}{\frac {1}{4^{2}}}{+}{\frac {1}{5^{2}}}-\Punkte } {\displaystyle {\frac {\pi ^{2}}{12}}=\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{2}}}={\frac {1}{1^{2}}}{-}{\frac {1}{2^{2}}}{+}{\frac {1}{3^{2}}}{-}{\frac {1}{4^{2}}}{+}{\frac {1}{5^{2}}}-\dots }

Summe[n=1 bis ∞]{((-1)^(k+1))/n^2}

T

A072691

[0;1,4,1,1,1,2,1,1,1,1,3,2,2,4,1,1,1,...]

0.91596559417721901505460351493238411

Katalanische Konstante

C {\ansichtsstil C} {\displaystyle C}

∑ n = 0 ∞ ( - 1 ) n ( 2 n + 1 ) 2 = 1 1 2 - 1 3 2 + 1 5 2 - 1 7 2 + {\darstellungsstil \sum _{n=0}^{\infty }{\frac {(-1)^{{n}}}{(2n+1)^{2}}}}={\frac {1}{1^{2}}}-{\frac {1}{3^{2}}}}+{\frac {1}{5^{2}}}-{\frac {1}{7^{2}}}+\ccdots } {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)^{2}}}={\frac {1}{1^{2}}}-{\frac {1}{3^{2}}}+{\frac {1}{5^{2}}}-{\frac {1}{7^{2}}}+\cdots }

Summe[n=0 bis ∞]{(-1)^n/(2n+1)^2}

I

A006752

[0;1,10,1,8,1,88,4,1,1,7,22,1,2,...]

1.05946309435929526456182529494634170

Verhältnis des Abstands zwischen Halbtönen

2 12 {\displaystyle {\sqrt[{12}]{2}}} {\displaystyle {\sqrt[{12}]{2}}}

2 12 {\displaystyle {\sqrt[{12}]{2}}} {\displaystyle {\sqrt[{12}]{2}}}

2^(1/12)

I

A010774

[1;16,1,4,2,7,1,1,2,2,7,4,1,2,1,60,1,3,1,2,...]

1,.08232323371113819151600369654116790

Zeta(04)

ζ 4 {\displaystyle \zeta {4}} {\displaystyle \zeta {4}}

π 4 90 = ∑ n = 1 ∞ 1 n 4 = 1 1 4 + 1 2 4 + 1 3 4 + 1 4 4 + 1 5 4 + ... {\darstellungsstil {\frac {\pi ^{4}}{90}}}=\summe _{n=1}^{\infty }{\frac {1}{n^{4}}}={\frac {1}{1^{4}}}+{\frac {1}{2^{4}}}+{\frac {1}{3^{4}}}+{\frac {1}{4^{4}}}}+{\frac {1}{5^{4}}}+\punkte } {\displaystyle {\frac {\pi ^{4}}{90}}=\sum _{n=1}^{\infty }{\frac {1}{n^{4}}}={\frac {1}{1^{4}}}+{\frac {1}{2^{4}}}+{\frac {1}{3^{4}}}+{\frac {1}{4^{4}}}+{\frac {1}{5^{4}}}+\dots }

Summe[n=1 bis ∞]{1/n^4}

T

A013662

[1;12,6,1,3,1,4,183,1,1,2,1,3,1,1,5,4,2,7,...]

1.1319882487943 ...

Viswanaths konstant

C V i {\i {\ansichtsstil C_{Vi}}} {\displaystyle C_{Vi}}

lim n → ∞ | a n | 1 n {\displaystyle \lim _{n\to \infty }|a_{n}|^{\frac {1}{n}}} {\displaystyle \lim _{n\to \infty }|a_{n}|^{\frac {1}{n}}}

A078416

[1;7,1,1,2,1,3,2,1,2,1,8,1,5,1,1,1,9,1,...]

1.20205690315959428539973816151144999

Apéry-Konstante

ζ ( 3 ) {\displaystyle \zeta (3)} {\displaystyle \zeta (3)}

∑ n = 1 ∞ 1 n 3 = 1 1 3 + 1 2 3 + 1 3 3 3 + 1 4 3 + 1 5 3 + {\darstellungsstil \sum _{n=1}^{\infty }{\frac {1}{n^{3}}}}={\frac {1}{1^{3}}}+{\frac {1}{2^{3}}}}+{\frac {1}{3^{3}}}}+{\frac {1}{4^{3}}}+{\frac {1}{5^{3}}}+\pünktchen \,\! } {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{3}}}={\frac {1}{1^{3}}}+{\frac {1}{2^{3}}}+{\frac {1}{3^{3}}}+{\frac {1}{4^{3}}}+{\frac {1}{5^{3}}}+\cdots \,\!}

Summe[n=1 bis ∞]{1/n^3}

I

A010774

[1;4,1,18,1,1,1,4,1,9,9,2,1,1,1,2,...]

1.22541670246517764512909830336289053

Gamma(3/4)

Γ ( 3 4 ) {\displaystyle \Gamma ({\tfrac {3}{4}}})} {\displaystyle \Gamma ({\tfrac {3}{4}})}

( − 1 + 3 4 ) ! {\Anzeigestil \links(-1+{\frac {3}{4}}}rechts)! } {\displaystyle \left(-1+{\frac {3}{4}}\right)!}

(-1+3/4)!

T

A068465

[1;4,2,3,2,2,1,1,1,2,1,4,7,1,171,3,2,3,1,1,...]

1.23370055013616982735431137498451889

Favard-Konstante

3 4 ζ ( 2 ) {\displaystyle {\tfrac {3}{4}}\zeta (2)} {\displaystyle {\tfrac {3}{4}}\zeta (2)}

π 2 8 = ∑ n = 0 ∞ 1 ( 2 n - 1 ) 2 = 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + ... {\displaystyle {\frac {\pi ^{2}}}{8}}}=\sum _{n=0}^{\infty }{\frac {1}{(2n-1)^{{{\frac {1}{2}}}={\frac {1}{1^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{5^{2}}}+{\frac {1}{7^{2}}}+\punkte } {\displaystyle {\frac {\pi ^{2}}{8}}=\sum _{n=0}^{\infty }{\frac {1}{(2n-1)^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{5^{2}}}+{\frac {1}{7^{2}}}+\dots }

Summe[n=1 bis ∞]{1/((2n-1)^2)}

T

A111003

[1;4,3,1,1,2,2,5,1,1,1,1,2,1,2,1,10,4,3,1,1,...]

1.25992104989487316476721060727822835

Kubikwurzel aus 2, Konstante Delian

2 3 {\ansichtsstil {\sqrt[{3}]{2}}} {\displaystyle {\sqrt[{3}]{2}}}

2 3 {\ansichtsstil {\sqrt[{3}]{2}}} {\displaystyle {\sqrt[{3}]{2}}}

2^(1/3)

I

A002580

[1;3,1,5,1,1,4,1,1,8,1,14,1,10,...]

1.29128599706266354040728259059560054

Traum des Zweitklässlers 2 J.Bernoulli

I 2 {\Anzeigestil I_{2}} {\displaystyle I_{2}}

∑ n = 1 ∞ 1 n n n = 1 + 1 2 2 2 + 1 3 3 + 1 4 4 + 1 5 5 + 1 6 6 + ... {\darstellungsstil \sum _{n=1}^{\infty }{\frac {1}{n^{{n}}}}=1+{\frac {1}{2^{{2}}}}+{\frac {1}{3^{3}}}+{\frac {1}{4^{4}}}+{\frac {1}{5^{5}}}+{\frac {1}{6^{6}}}}+\punkte } {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{n}}}=1+{\frac {1}{2^{2}}}+{\frac {1}{3^{3}}}+{\frac {1}{4^{4}}}+{\frac {1}{5^{5}}}+{\frac {1}{6^{6}}}+\dots }

Summe[1/(n^n]), {n, 1, ∞}]]

A073009

[1;3,2,3,4,3,1,2,1,1,6,7,2,5,3,1,2,1,8,1,...]

1.32471795724474602596090885447809734

Kunststoff-Nummer

ρ {\rho \rho \rho } {\displaystyle \rho }

1 + 1 + 1 + 1 + 1 + 3 3 3 3 3 3 {\displaystyle {\sqrt[{3}]{1+{\sqrt[{3}]{1+{\sqrt[{3}]{1+{\sqrt[{3}]{1+\cdots }}}}}}}}} {\displaystyle {\sqrt[{3}]{1+{\sqrt[{3}]{1+{\sqrt[{3}]{1+{\sqrt[{3}]{1+\cdots }}}}}}}}}

I

A060006

[1;3,12,1,1,3,2,3,2,4,2,141,80,2,5,1,2,8,...]

1.41421356237309504880168872420969808

Quadratwurzel aus 2, Pythagoras-Konstante

2 {\displaystyle {\sqrt {2}}} {\displaystyle {\sqrt {2}}}

∏ n = 1 ∞ 1 + ( - 1 ) n + 1 2 n - 1 = ( 1 + 1 1 1 ) ( 1 - 1 3 ) ( 1 + 1 5 ) . . . . {\Anzeigestil \prod _{n=1}^{\infty }1+{\frac {(-1)^{{n+1}}}{2n-1}}}=\links(1{+}{\frac {1}{1}{1}}}\rechts)\links(1{-}{\frac {1}{3}}}}}rechts)\links(1{+}{\frac {1}{5}}\rechts)... } {\displaystyle \prod _{n=1}^{\infty }1+{\frac {(-1)^{n+1}}{2n-1}}=\left(1{+}{\frac {1}{1}}\right)\left(1{-}{\frac {1}{3}}\right)\left(1{+}{\frac {1}{5}}\right)...}

prod[n=1 bis ∞]{1+(-1)^(n+1)/(2n-1)}

I

A002193

[1;2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,...]
= [1;(2),...]

1.44466786100976613365833910859643022

Steiner-Nummer

e 1 e {\darstellungsstil e^{\frac {1}{e}}}} {\displaystyle e^{\frac {1}{e}}}

e 1 / e {\Anzeigestil e^{1/e}} {\displaystyle e^{1/e}}... Obere Grenze der Durchdringung

A073229

[1;2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...]

1.53960071783900203869106341467188655

Lieb'sche quadratische Eiskonstante

W 2 D {\Anzeigestil W_{2D}} {\displaystyle W_{2D}}

lim n → ∞ ( f ( n ) ) n - 2 = ( 4 3 ) 3 2 {\darstellungsstil \lim _{n\to \infty }(f(n))^{{n^{-2}}=\links({\frac {4}{3}}}}rechts)^{\frac {3}{2}}}} {\displaystyle \lim _{n\to \infty }(f(n))^{n^{-2}}=\left({\frac {4}{3}}\right)^{\frac {3}{2}}}

(4/3)^(3/2)

I

A118273

[1;1,1,5,1,4,2,1,6,1,6,1,2,4,1,5,1,1,2,...]

1.57079632679489661923132169163975144

Walliser Produkt

π / 2 {\Anzeigestil \pi /2} {\displaystyle \pi /2}

∏ n = 1 ∞ ( 4 n 2 4 n 2 - 1 ) = 2 1 2 3 4 3 4 5 6 5 6 7 8 7 8 9 {\displaystyle \prod _{n=1}^{\infty }\left({\frac {4n^{2}}{4n^{2}-1}}}\right)={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot {\frac {8}{7}}\cdot {\frac {\frac {8}{9}}\cdots } {\displaystyle \prod _{n=1}^{\infty }\left({\frac {4n^{2}}{4n^{2}-1}}\right)={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot {\frac {8}{7}}\cdot {\frac {8}{9}}\cdots }

T

A019669

[1;1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1...]

1.60669515241529176378330152319092458

Erdős-Borwein konstant

E B {\,B}}Anzeigeart E_{\,B}} {\displaystyle E_{\,B}}

∑ n = 1 ∞ 1 2 n - 1 = 1 1 1 + 1 3 + 1 7 + 1 15 + {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{2^{{n}-1}}}={\frac {1}{1}}}}+{\frac {1}{3}}+{\frac {1}{7}}}+{\frac {1}{15}}}+\cdots \,\! } {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{2^{n}-1}}={\frac {1}{1}}+{\frac {1}{3}}+{\frac {1}{7}}+{\frac {1}{15}}+\cdots \,\!}

Summe[n=1 bis ∞]{1/(2^n-1)}

I

A065442

[1;1,1,1,1,5,2,1,2,29,4,1,2,2,2,2,6,1,7,1,...]

1.61803398874989484820458633436563812

Phi, Goldener Schnitt

φ {\varphi \displaystyle \varphi } {\displaystyle \varphi }

1 + 5 2 = 1 + 1 + 1 + 1 + 1 + 1 + {\displaystyle {\frac {1+{\sqrt {5}}}{2}}}={\sqrt {1+{\sqrt {1+{\sqrt {1+{\sqrt {1+\cdots }}}}}}}}} {\displaystyle {\frac {1+{\sqrt {5}}}{2}}={\sqrt {1+{\sqrt {1+{\sqrt {1+{\sqrt {1+\cdots }}}}}}}}}

(1+5^(1/2))/2

I

A001622

[0;1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...]
= [0;(1),...]

1.64493406684822643647241516664602519

Zeta(2)

ζ ( 2 ) {\displaystyle \zeta (\,2)} {\displaystyle \zeta (\,2)}

π 2 6 = ∑ n = 1 ∞ 1 n 2 = 1 1 2 + 1 2 2 2 + 1 3 2 + 1 4 2 + {\displaystyle {\frac {\pi ^{2}}}{6}}}=\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}}+{\frac {1}{3^{2}}}}+{\frac {1}{4^{2}}}+\ccdots } {\displaystyle {\frac {\pi ^{2}}{6}}=\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{4^{2}}}+\cdots }

Summe[n=1 bis ∞]{1/n^2}

T

A013661

[1;1,1,1,4,2,4,7,1,4,2,3,4,10 1,2,1,1,1,15,...]

1.66168794963359412129581892274995074

Die quadratische Wiederholungskonstante von Somos

σ {\Anzeigestil \sigma } {\displaystyle \sigma }

1 2 3 3 = 1 1 / 2 ; 2 1 / 4 ; 3 1 / 8 {\displaystyle {\sqrt {1{\sqrt {2{\sqrt {3\cdots }}}}}}=1^{1/2};2^{1/4};2^{1/4};3^{1/8}\cdots } {\displaystyle {\sqrt {1{\sqrt {2{\sqrt {3\cdots }}}}}}=1^{1/2};2^{1/4};3^{1/8}\cdots }

T

A065481

[1;1,1,1,21,1,1,1,6,4,2,1,1,2,1,3,1,13,13,...]

1.73205080756887729352744634150587237

Theodorus-Konstante

3 {\displaystyle {\sqrt {3}}} {\displaystyle {\sqrt {3}}}

3 {\displaystyle {\sqrt {3}}} {\displaystyle {\sqrt {3}}}

3^(1/2)

I

A002194

[1;1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,...]
= [1;(1,2),...]

1.75793275661800453270881963821813852

Kasner-Nummer

R {\Anzeigestil R} {\displaystyle R}

1 + 2 + 3 + 4 + {\displaystyle {\sqrt {1+{\sqrt {2+{\sqrt {3+{\sqrt {4+\cdots }}}}}}}}} {\displaystyle {\sqrt {1+{\sqrt {2+{\sqrt {3+{\sqrt {4+\cdots }}}}}}}}}

A072449

[1;1,3,7,1,1,1,2,3,1,4,1,1,2,1,2,20,1,2,2,...]

1.77245385090551602729816748334114518

Carlson-Levin-Konstante

Γ ( 1 2 ) {\displaystyle \Gamma ({\tfrac {1}{2}}})} {\displaystyle \Gamma ({\tfrac {1}{2}})}

π = ( − 1 2 ) ! {\displaystyle {\sqrt {\pi }}=\links(-{\frac {1}{2}}\rechts)! } {\displaystyle {\sqrt {\pi }}=\left(-{\frac {1}{2}}\right)!}

qrt (pi)

T

A002161

[1;1,3,2,1,1,6,1,28,13,1,1,2,18,1,1,1,83,1,...]

2.29558714939263807403429804918949038

Universelle parabolische Konstante

P 2 {\Anzeigestil P_{\,2}}} {\displaystyle P_{\,2}}

ln ( 1 + 2 ) + 2 {\Anzeigestil \ln(1+{\sqrt {2}}})+{\sqrt {2}}} {\displaystyle \ln(1+{\sqrt {2}})+{\sqrt {2}}}

ln(1+sqrt 2)+sqrt 2

T

A103710

[2;3,2,1,1,1,1,3,3,1,1,4,2,3,2,7,1,6,1,8,...]

2.30277563773199464655961063373524797

Bronze-Nummer

σ R r r {\Anzeigestil \sigma _{\,Rr}} {\displaystyle \sigma _{\,Rr}}

3 + 13 2 = 1 + 3 + 3 + 3 + 3 + 3 + 3 + {\displaystyle {\frac {3+{\sqrt {13}}}{2}}}=1+{\sqrt {3+{\sqrt {3+{\sqrt {3+{\sqrt {3+{\sqrt {3+\cdots }}}}}}}}} {\displaystyle {\frac {3+{\sqrt {13}}}{2}}=1+{\sqrt {3+{\sqrt {3+{\sqrt {3+{\sqrt {3+\cdots }}}}}}}}}

(3+sqrt 13)/2

I

A098316

[3;3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,...]
= [3;(3),...]

2.37313822083125090564344595189447424

Lévy-Konstante2

2 ln γ {\displaystyle 2\,\ln \,\gamma } {\displaystyle 2\,\ln \,\gamma }

π 2 6 ln ( 2 ) {\displaystyle {\frac {\pi ^{2}}{6\ln(2)}}} {\displaystyle {\frac {\pi ^{2}}{6\ln(2)}}}

Pi^(2)/(6*ln(2))

T

A174606

[2;2,1,2,8,57,9,32,1,1,2,1,2,1,2,1,2,1,3,2,...]

2.50662827463100050241576528481104525

Quadratwurzel aus 2 pi

2 π {\displaystyle {\sqrt {\pi {2\pi }}} {\displaystyle {\sqrt {2\pi }}}

2 π = lim n → ∞ n ! e n n n n n {\displaystyle {\sqrt {2\pi }}=\lim _{n\to \infty }{\frac {n!\;e^{n}}{n^{n}{\sqrt {n}}}}} {\displaystyle {\sqrt {2\pi }}=\lim _{n\to \infty }{\frac {n!\;e^{n}}{n^{n}{\sqrt {n}}}}}

qrt (2*pi)

T

A019727

[2;1,1,37,4,1,1,1,1,9,1,1,2,8,6,1,2,2,1,3,...]

2.66514414269022518865029724987313985

Gelfond-Schneider-Konstante

G G G S {\Anzeigestil G_{_{{\,GS}}}} {\displaystyle G_{_{\,GS}}}

2 2 {\Anzeigestil 2^{\sqrt {2}}} {\displaystyle 2^{\sqrt {2}}}

2^sqrt{2}

T

A007507

[2;1,1,1,72,3,4,1,3,2,1,1,1,14,1,2,1,1,3,1,...]

2.68545200106530644530971483548179569

Chintchin-Konstante

K 0 {\Anzeigestil K_{\,0}}} {\displaystyle K_{\,0}}

∏ n = 1 ∞ [ 1 + 1 n ( n + 2 ) ] ln n / ln 2 {\displaystyle \prod _{n=1}^{\infty }\links[{1+{1 \over n(n+2)}}}rechts]^{\ln n/\ln 2}}} {\displaystyle \prod _{n=1}^{\infty }\left[{1+{1 \over n(n+2)}}\right]^{\ln n/\ln 2}}

prod[n=1 bis ∞]{(1+1/(n(n+2)))^((ln(n)/ln(2))}

?

A002210

[2;1,2,5,1,1,2,1,1,3,10,2,1,3,2,24,1,3,2,...]

3.27582291872181115978768188245384386

Khinchin-Lévy-Konstante

γ {\displaystyle \gamma } {\displaystyle \gamma }

e π 2 / ( 12 ln 2 ) {\displaystyle e^{\pi ^{2}/(12\ln 2)}} {\displaystyle e^{\pi ^{2}/(12\ln 2)}}

e^(\pi^2/(12 ln(2))

A086702

[3;3,1,1,1,2,29,1,130,1,12,3,8,2,4,1,3,55,...]

3.35988566624317755317201130291892717

Reziproke Fibonacci-Konstante

Ψ {\Anzeigestil \Psi } {\displaystyle \Psi }

∑ n = 1 ∞ 1 F n = 1 1 + 1 1 1 + 1 2 + 1 3 + 1 5 + 1 8 + 1 13 + {\darstellungsstil \sum _{n=1}^{\infty }{\frac {1}{F_{n}}}}={\frac {1}{1}{1}}+{\frac {1}{1}{1}}}+{\frac {1}{2}}}+{\frac {1}{3}}}+{\frac {1}{5}}+{\frac {1}{8}}+{\frac {1}{13}}+\cdots } {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{F_{n}}}={\frac {1}{1}}+{\frac {1}{1}}+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{5}}+{\frac {1}{8}}+{\frac {1}{13}}+\cdots }

A079586

[3;2,1,3,1,1,13,2,3,3,2,1,1,6,3,2,4,362,...]

4.13273135412249293846939188429985264

Wurzel aus 2 e pi

2 e π {\displaystyle {\sqrt {2e\pi }}} {\displaystyle {\sqrt {2e\pi }}}

2 e π {\displaystyle {\sqrt {2e\pi }}} {\displaystyle {\sqrt {2e\pi }}}

sqrt(2e pi)

T

A019633

[4;7,1,1,6,1,5,1,1,1,8,3,1,2,2,15,2,1,1,2,4,...]

6.58088599101792097085154240388648649

Froda-Konstante

2 e {\Anzeigestil 2^{\,e}} {\displaystyle 2^{\,e}}

2 e {\Anzeigestil 2^{e}} {\displaystyle 2^{e}}

2^e

[6;1,1,2,1,1,2,3,1,14,11,4,3,1,1,7,5,5,2,7,...]

9.86960440108935861883449099987615114

Pi zum Quadrat

π 2 {\Anzeigestil \pi ^{2}} {\displaystyle \pi ^{2}}

6 ∑ n = 1 ∞ 1 n 2 = 6 1 2 + 6 2 2 + 6 3 2 + 6 4 2 + {\displaystyle 6\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}}={\frac {6}{1^{2}}}}+{\frac {6}{2^{2}}}}+{\frac {6}{3^{2}}}+{\frac {6}{4^{2}}}+\cdots } {\displaystyle 6\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {6}{1^{2}}}+{\frac {6}{2^{2}}}+{\frac {6}{3^{2}}}+{\frac {6}{4^{2}}}+\cdots }

6 Summe[n=1 bis ∞]{1/n^2}

T

A002388

[9;1,6,1,2,47,1,8,1,1,2,2,1,1,8,3,1,10,5,...]

23.1406926327792690057290863679485474

Gelfond-Konstante

e π {\displaystyle e^{\pi }} {\displaystyle e^{\pi }}

∑ n = 0 ∞ π n n n ! = π 1 1 1 + π 2 2 2 ! + π 3 3 ! + π 4 4 ! + {\displaystyle \sum _{n=0}^{\infty }{\frac {\pi ^{n}}{n!}}={\frac {\pi ^{1}}{1}}}+{\frac {\pi ^{2}}}{2!}}}+{\frac {\pi ^{3}}{3!}}}+{\frac {\pi ^{{{4}}{4!}}+\cdots } {\displaystyle \sum _{n=0}^{\infty }{\frac {\pi ^{n}}{n!}}={\frac {\pi ^{1}}{1}}+{\frac {\pi ^{2}}{2!}}+{\frac {\pi ^{3}}{3!}}+{\frac {\pi ^{4}}{4!}}+\cdots }

Summe[n=0 bis ∞]{(pi^n)/n!}

T

A039661

[23;7,9,3,1,1,591,2,9,1,2,34,1,16,1,30,1,...]



Verwandte Seiten

Online-Bibliographie

  • Online-Enzyklopädie ganzzahliger Sequenzen (OEIS)
  • Simon Plouffe, Konstantentabellen
  • Die Seite von Xavier Gourdon und Pascal Sebah über Zahlen, mathematische Konstanten und Algorithmen
  • MatheKonstanten

Fragen und Antworten

F: Was ist eine mathematische Konstante?


A: Eine mathematische Konstante ist eine Zahl, die eine besondere Bedeutung für Berechnungen hat.

F: Was ist ein Beispiel für eine mathematische Konstante?


A: Ein Beispiel für eine mathematische Konstante ist ً, das das Verhältnis des Umfangs eines Kreises zu seinem Durchmesser darstellt.

F: Ist der Wert von ً immer derselbe?


A: Ja, der Wert von ً ist für jeden Kreis immer derselbe.

F: Sind mathematische Konstanten ganze Zahlen?


A: Nein, mathematische Konstanten sind normalerweise reelle, nicht-ganzzahlige Zahlen.

F: Woher kommen die mathematischen Konstanten?


A: Mathematische Konstanten stammen nicht wie physikalische Konstanten aus physikalischen Messungen.

AlegsaOnline.com - 2020 / 2023 - License CC3